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ABSTRACT

An efficient method is developed for obtaining propagation characteristics of microstrip-line type struc-

tures in which a number of conductors are located on various interfaces. Specific computations have been carried

out for suspended micros trip line structures with tuning conductive septums. A number of

are included.

Introduction

The spectral domain technique developed by Itoh

and Mittra has been applied to a number of microstrip-

line structures.
1,2 ‘-

It is an efficient numerical
technique having several advantages over many other
methods. However, to date, this technique has been

applied only to the structures in which center conduc-
tors (strips) are located on one of the dielectric in–
terfaces, e.g. the air-substrate interface.

This paper reports a modification of the spectral

domain technique which can handle the structures in
which a number of conductors are placed on various in-

terfaces (Fig. 1). The original version is not capa–
ble of solving such structures. Also, formulation in

this paper is quite general and requires no structural

symmetry to exist. Before discussing the technique,

we will describe the motivation of the present work.

Recently, several attempts have been made to in-

crease design flexibility of MIC structures by intro-
ducing additional conductors on interfaces different
from the one on which the original strips are located.
Aikawa reported the use of grounded septuma located on
the lower side of the substrate in the coupled sus-

pended line3 (Fig. 2). He has successfully developed
tight couplers by adjusting the width of septums with–
out which such couplers were extremely difficult to
realize. Such composite structures are difficult to

analyze and the design procedure based on slowly con-

verging numerical methods is prohibitively expensive
because there are more structural parameters to be ad–

justed than in conventional structures. Hence, devel-
opment of an efficient analysis method is needed.

The principal purpose of the paper is to present

a formulation for general structures (Fig. 1). Nume r-

ical results are presented for the suspended micros trip

with two grounded septums. Most of the data are for
single strip case (S = O in Fig. 2) as extensive data

for coupled lines will be reported elsewhere.

Formulation

In this paper, we restrict ourselves to cases

where the quasi–TEM approximation is valid, although

the present method can readily be extended to a more
rigorous dispersion analysis. Under this assumption,
we only need to solve Poisson’s equation in the cross
section subject to appropriate boundary conditions.

Instead of solving such a problem directly in the XY
coordinate, we introduce the Fourier transform of the
potential
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@(n, y) =~$(x, y) sin %x
o

When the Poisson’s equation is
its solution in the i–th layer

.-

data useful for design

dx (1)

Fourier transformed,

is

@i(n, Y) = Aih) Sinh ~Y + Bi(n) cosh~y (2)

The interface conditions are also Fourier transformed,
and the transformed conditions are used to eliminate
all the Ai’s and Bi’s. After mathematical derivation

for this process is completed, one obtains the follOw-

ing coupled algebraic equations,

N

X dij(n) ~j(n) = ~Vi + ~oi , i=l ,2 ,..., N (3)
j=l

where

known

;“i’s

tions

ioi’s

tions
the re

.
G ‘s are known, p.

ij
‘s are the transforms of un-

1
charge distributions at the j-th interface.

are transforms of tbe given potential distribu-

on the strips at the i–th interface whereas

are transforms of unknown potential distribu-

outside the strips at the i–th interface. When
is no strip at the j–th surface, the j–th equa-

tion vanishes and the j-th term on the left-hand side

becomes zero as P. is zero for such j.
J

Notice that (3) is an N x N matrix equation in

contrast to a set of N x N coupled integral equations

appearing in convential space domain formulations

which contain convolution integrals. G. . is actually
13

the transform of the Green’s function G, . which deter-
13

mines the potential at the i-th interface due to the
unit charge at the j-th interface. Also (3) contains

. .
a total of 2N unknowns, o. and $ However, N un-

. J oi”

knO~s, $Oi, can be eliminated in the solution process
.

and one can solve (3) only for N unknown o. ‘s. TO
.J

this end we apply Galerkin’s method to (3). First we

expand p. in terms of known basis functions
3

s P.
jg s-s

~j (n)= x z (n)
S=l p=l

Cp Pjp (4)

where S. is the number of strips at the j-th interface.
3



P ~n is the transform of an assumed charge distribution
JY

on the s-th strip at the j-th interface.

Substituting (4) into (3) and taking the inner
“v

products of the resulting equations with p
iq

,q=l,

. . . . Pi and v = 1, . . . . Si, one obtains the following

N N
z P.s x 2 P.s. matrix equations for cs

j=l ~j j=l 33 P

i=l,2, . . ..N
N ‘j ‘j
Zz Z K~(i, j) c; =Y~(i) v=l, . . . . Si (5)

j=l ~=1 p=l

q=l, . . ..P
i

Vs
where K and Yv are known quantities and can be com-

qP q “s
puted quite efficiently once p. is selected. Once

CSI
3P

s are obtained by solving (5), the charge distribu-
P

tion on the s-th strip at the j-th interface can
readily be computed from

s. P.
J

pj (x) = z ZJ c; P;p(x)
~=1 p=l

(6)

s
where p is the assumed charge distribution from

~P
-s

which P . was analytically derived.
3P

Although (5) may seem complicated, in most cases
it results in small size matrix, because for a rea-

sonably accurate answer P2 only needs to be unity or

at most two. For instanc~, when only one strip each
is located at two different interfaces (Si = 1, N =

2), the size of the matrix is either 2 x ; or 4 X 4.

Results for the Suspended Micros trips with Septums

Numerical results were obtained for both single

and coupled suspended micros trip with septums (Fig.

2). First the accuracy of the method was checked by

3
comparing our results with those reported by Aikawa
who used a finite difference technique. As shown in
Fig. 3, the agreement is quite satisfactory.

A number of data are presented here for a single

suspended line with symmetric septuma. Figs. 4 and 5

present characteristic impedance and normalized guide
wavelength, respectively, versus the width of the
strip for a number of septum widths. It is seen from
Fig. 5 that for large a, the guide wavelength A be-

Z
comes smaller as the strip width is increased. ‘On
the other hand, when a is reduced A takes a maximum

g
at some W, The reason for this phenomenon may be as

follows: When a is large, the effect of the air por-
tion (Region 1) to the field distribution is reduced.
As W is increased, most of the flux lies in the di-
electric region, causing A to be small. For small

E
a, i resembles that of th; conventional suspended

E
line; As W is increased, the effect of air becomes
more important and A increases until the coupling

g
between the strip and the septums becomes dominant.
After such a situation a larger amount of flux moves

into the dielectric region and A becomes smaller
8

Fig. 6 shows characteristic impedance versus the
septum width a for three different dielectric materi-

als. The strip width W is fixed. It is clear that Z

can be adjusted over a wide rsnge by varying a. This

feature is quite attractive in MIC application because

in suspended line the fabrication of low impedance

lines is often difficult.
4

Conclusions

We presented a general method, based on spectral

domain approach, for multi-conductor printed lines for
MIC. Numerical examples are given for the suspended

micros trip with grounded septums. This structure is
considered useful for MIC application, because propaga-
tion characteristics can be adjusted by septums which

add one more degree of freedom in the design.

The numerical method presented here is applicable

to a wide range of problems and has several advanta-

geous features. (1) The method is numerically effi-

cient. (2) No convolution integrals are involved.

(3) The size of matrix is quite small.
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Fig. 1. Cross section of shielded multi-conductor

printed line.
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Fig. 2. Suspended micro strip line with septums.
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Fig. 3. Comparison of results with those by Aikawa.

E- = 2.4, S = 0.3351NII, M = 1.48mm, L = 16.4

Fig. 4.
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~, t = 16.4m, h = 1.64mm, b = 8.2mm.
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characteristic impedance vs. the strip width.
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Fig. 5. Normalized guide wavelength vs. the
width. c = 3.8, S/h = O, L/h = blh = t/h =

r
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Fig. 6. Characteristic impedance vs. the septum width.
S/h = O, wlh = 1.2, L/h = blh = tfh = 10
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